To preserve tissue integrity during the structural rearrangements that occur during central nervous system (CNS) development, an intricate balance between extracellular matrix (ECM) synthesis and degradation must be maintained. The matrix metalloproteinases (MMPs) are believed to be the main mediators of ECM degradation. Because MMPs function in the turnover of a broad-spectrum of ECM proteins their activity is tightly regulated by interaction with tissue inhibitors of metalloproteinases (TIMPs). Whereas the primary function of TIMPs is to inhibit MMP activity, evidence is mounting that TIMPs are multifunctional molecules that exert diverse cell biological functions distinct from their MMP-inhibitory activities. Although the role of MMPs and TIMPs in the morphogenesis of non-neural tissues has been investigated, to date few studies have analyzed MMP or TIMP expression during CNS development. In the present report, we demonstrate the regulation of Timp-3 mRNA expression throughout the course of CNS development. In particular, Timp-3 mRNA is expressed in embryonic ventricular zones and the postnatal subventricular zone (SVZ). In addition, Timp-3 is expressed in the rostral migratory steam (RMS) to the olfactory bulb in a pattern similar to the ECM proteoglycan brevican. These data suggest that TIMP-3 and brevican may act in concert to guide neuronal migration along the RMS.
Copyright 2000 Wiley-Liss, Inc.