Pace prevention of atrial tachyarrhythmias is based in part on the reduction of intra-atrial (IAA) and/or inter-atrial (IEA) conduction. We previously introduced a novel pacing mode using floating atrial ring electrodes on a VDD-lead (BIdirectional MO nophasic impulSe: BIMOS). The effects of BIMOS pacing on IAA and IEA conduction times has not been studied. In nine Merino sheep electrode catheters were placed at the His-Bundle (HBE), high right atrium (HRA), coronary sinus ostium (Cs-Os), and left lateral atrium (LLA). A VDD-lead was introduced with floating electrodes in the high and mid right atrium (Floating). IAA (S/P-HRA, S/P-Cs-Os, S/P-HBE, S/P-Floating), IEA conduction times (S/P-LLA), and P-wave duration (PD) were measured during sinus rhythm (S), during bipolar cathodal pacing (P) in the HRA, in the Cs-Os position, as well as during BIMOS floating pacing. The mean PD during S was significantly shorter than during HRA- (66. 6+/-12.8ms; vs. 116.2+/-11.1ms; p<0.05) and Cs-Os-P (66.6+/-12.8ms vs. 94.4+/-9.0ms; p<0.05). In comparison to HRA-P, BIMOS configuration lead to a significant reduction of the P-wave duration (116.2+/-11.1ms vs. 85. 4+/-8.8ms; p<0.05). During BIMOS pacing, the global atrial conduction time was significantly shorter than during pacing in the HRA and Cs-Os position. The results of this study demonstrate a clear reduction of IAA and IEA conduction times using BIMOS configurations compared to conventional HRA-P. Furthermore, BIMOS pacing produced a more homogeneous atrial activation when compared with conventional HRA- and Cs-Os-P.