G-protein-coupled metabotropic glutamate receptors (mGluRs) are being implicated in various forms of neuroplasticity and CNS disorders. This study examined whether the sensitivities of mGluR agonists are modulated in a distinct fashion in different models of synaptic plasticity, specifically, kindling and chronic cocaine treatment. The influence of kindling and chronic cocaine exposure in vivo was examined in vitro on the modulation of synaptic transmission by group II and III metabotropic glutamate receptors using whole cell voltage-clamp recordings of central amygdala (CeA) neurons. Synaptic transmission was evoked by electrical stimulation of the basolateral amygdala (BLA) and ventral amygdaloid pathway (VAP) afferents in brain slices from control rats and from rats treated with cocaine or exposed to three to five stage-five kindled seizures. This study shows that after chemical stimulation with chronic cocaine exposure or after electrical stimulation with kindling the receptor sensitivities for mGluR agonists are altered in opposite ways. In slices from control rats, group II agonists, (2S,1'S,2'S)-2-(carboxycyclopropyl)glycine (LCCG1) and (+)-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (LY354740), depressed neurotransmission more potently at the BLA-CeA than at the VAP-CeA synapse while group III agonist, L(+)-2-amino-4-phosphonobutyrate (LAP4), depressed neurotransmission more potently at the VAP-CeA synapse than at the BLA-CeA. These agonist actions were not seen (were absent) in amygdala neurons from chronic cocaine-treated animals. In contrast, after kindling, concentration response relationships for LCCG1 and LAP4 were shifted to the left, suggesting that sensitivity to these agonists is increased. Except at high concentrations, LCCG1, LY354740, and LAP4 neither induced membrane currents nor changed current-voltage relationships. Loss of mGluR inhibition with chronic cocaine treatment may contribute to counter-adaptive changes including anxiety and depression in cocaine withdrawal. Drugs that restore the inhibitory effects of group II and III mGluRs may be novel tools in the treatment of cocaine dependence. The enhanced sensitivity to group II and III mGluR agonists in kindling is similar to that recorded at the lateral to BLA synapse in the amygdala where they reduce epileptiform bursting. These findings suggest that drugs modifying mGluRs may prove useful in the treatment of cocaine withdrawal or epilepsy.