Methods that measure PM2.5 mass, total particulate NO3-, and elemental carbon (EC) were evaluated in seven U.S. cities from 1997 to 1999. Sampling was performed in Bakersfield, CA; Boston, MA; Chicago, IL; Dallas, TX; Philadelphia, PA; Phoenix, AZ; and Riverside, CA. Evaluating and validating methods that measure the components of fine mass are important to the effort of establishing a speciation-monitoring network. The Harvard Impactor (HI), which measures fine particle mass, showed excellent agreement (r2 = 0.99) with the PM2.5 Federal Reference Method (FRM) for 81 24-hr samples in Riverside and Bakersfield. The HI also showed good precision (4.8%) for 243 24-hr collocated samples over eight studies. The Aethalometer was employed in six of the sampling locations to measure black carbon (BC). These values were compared to EC as measured from a quartz filter using thermal analysis. For the six cities combined, the two methods were highly correlated (r2 = 0.94; 187 24-hr samples); however, the BC values were approximately 24% less than the EC measurements consistently across all six cites. This compares well to results observed for EC/BC measurements observed in other semi-urban areas. Particulate NO3- was measured using the Harvard-EPA Annular Denuder System (HEADS). This was compared to the NO3- measured from the HI Teflon (DuPont) filter to assess NO3- artifacts. Significant NO3- losses (approximately 50% of total NO3-) were found in Riverside, Philadelphia, and Boston, while minimal artifacts were observed in the other sites. Two types of HEADS configurations were employed in five cities. One system used a Na2CO3-coated glass fiber filter, and the other type used a nylon filter to collect volatilized NO3- from the Teflon filter. The HEADS with the Na2CO3-coated filter consistently underestimated the total particulate NO3- by approximately 20% compared to the nylon HEADS.