KM871 is a chimeric antibody recognizing ganglioside GD3, which is one of the major gangliosides expressed on the cell surface of human tumors of neuroectodermal origin. This study demonstrates the antitumor activity of KM871 against human melanoma xenografts in nude mice, and analyzes the effector function operating in mice. In a well-established tumor model, KM871 showed antitumor activity against H-15 and SK-MEL-28 human melanoma but not against H-187 and G361 human melanoma when administered intravenously 5 days/week for 2 weeks. The G361 tumor became sensitive when KM871 was first administered on the day of tumor inoculation. In this assay, it was observed that almost all the mice were tumor-free, but a few mice developed tumors. Therefore, we examined the amount and expression pattern of GD3 antigen on G361 tumors escaping from KM871 treatment, but no change was observed. Next we examined the optimal administration schedule for KM871 in mice, using H-15 melanoma. KM871 showed antitumor activity when administered intravenously either 5 days/week for 2 weeks or three biweekly doses. However, the effect of the former schedule was stronger than three biweekly doses. To compare the effector function in humans and mice, we studied the complement-mediated cytotoxicity, antibody-dependent cell-mediated cytotoxicity and antibody-dependent macrophage-mediated cytotoxicity of KM871 using complement or effector cells prepared from humans and mice. It was found that the antibody-dependent cell-mediated cytotoxicity exerted by polymorphonuclear cells and antibody-dependent macrophage-mediated cytotoxicity were the only antitumor mechanism of KM871 in mice. However their action was very weak compared with that in humans, and complement-mediated cytotoxicity, which was strong in humans, was not observed in mice. Therefore, the antitumor activity of KM871 against human melanomas evaluated by the nude mouse model might be underestimated. These results indicate that KM871 shows good antitumor activity against GD3-positive human melanoma and the antitumor activity expected in humans might be superior to that of the nude mouse model.