Evaluating limited specificity of drug pumps reduced relative resistance in human MDR phenotypes

Eur J Biochem. 2000 Sep;267(17):5369-77. doi: 10.1046/j.1432-1327.2000.01560.x.

Abstract

In the parallel paper, we developed a property to characterize drug efflux pumps, i.e. the reduced relative resistance (RRR). Using this RRR, we here investigate whether the observed diversity in human multidrug resistance (MDR) phenotypes might be due to variable levels of P-glycoprotein encoded by MDR1. We analyzed resistance phenotypes of various human cell lines in which either one, or both, classical human multidrug resistance genes, MDR1 and MDR3, are overexpressed. In addition, RRR values were calculated for MDR phenotypes presented in the literature. The results suggest that more than a single mechanism is required to account for the observed phenotypic diversity of classical multidrug resistance. This diversity is only partly due to differences in plasma membrane permeabilities between cell line families. It is discussed whether the alternative MDR phenotypes might be MDR1 phenotypes modified by other factors that do not themselves cause MDR. The method we here apply may also be useful for other nonspecific enzymes or pumps.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • ATP Binding Cassette Transporter, Subfamily B, Member 1 / genetics*
  • Drug Resistance, Multiple / genetics*
  • Humans
  • Phenotype
  • Tumor Cells, Cultured

Substances

  • ATP Binding Cassette Transporter, Subfamily B, Member 1