Signals from the developing mammalian blastocyst rescue the corpus luteum (CL) and modulate the uterine environment in preparation for implantation and early pregnancy. Our previous studies demonstrated that both short- and long-term administration of chorionic gonadotropin (CG) markedly alters the morphology and the biochemical activity of the receptive endometrium. Because the effects of CG were superimposed on a progesterone-primed endometrium, this study was undertaken to determine if the inhibition of progesterone action by progesterone receptor antagonists (PRa) in intact and ovariectomized baboons would alter the action of CG on the endometrium at the time of uterine receptivity. In the short-term hCG-treated baboons, the PRa reduced the epithelial plaque reaction, completely inhibited alpha-smooth muscle actin (alphaSMA) expression in stromal fibroblasts, and induced the reappearance of the progesterone (PR) and estrogen (ERalpha) receptors in epithelial cells. However, this treatment protocol had no effect on the expression of glycodelin in the glandular epithelium. In contrast, glycodelin expression in addition to alphaSMA was suppressed in the ovariectomized animals. In the long-term hCG-treated baboons, the PRa had a similar effect on both alphaSMA, PR, and ER. In addition, this treatment also resulted in an inhibition of glycodelin expression in the glandular epithelium. These results indicate that blocking the action of progesterone on the endometrium even for a short period of time has a profound effect on the hCG-induced response in stromal fibroblasts. In contrast, for the diminution of glandular epithelial function in the presence of an ovary requires prolonged inhibition of progesterone action, suggesting a potential paracrine effect on the endometrium from the CL in response to hCG.