Blood flow to fingers is reduced during cold exposure. This is generally attributed to vasoconstriction. We tested the hypothesis that increased blood viscosity, not vasoconstriction, accounts for reductions of cutaneous flow after fingers cool. Blood viscosity was higher at 10 degree C than at 27 degree C and independent of hematocrit at low shear rates. The increase of finger vascular resistance may be due to increased vascular hindrance early in cold exposure (< 15 min) and is more likely due to increased viscosity after 20-30 min, a factor that may dominate the peripheral microcirculaton during prolonged cold exposure.