Purpose: To ensure target coverage during radiotherapy, all sources of geometric uncertainty in target position must be considered. Movement of the prostate due to breathing has not traditionally been considered in prostate radiotherapy. The purpose of this study is to report the influence of patient orientation and immobilization on prostate movement due to breathing.
Methods and materials: Four patients had radiopaque markers implanted in the prostate. Fluoroscopy was performed in four different positions: prone in alpha cradle, prone with an aquaplast mold, supine on a flat table, and supine with a false table under the buttocks. Fluoroscopic movies were videotaped and digitized. Frames were analyzed using 2D-alignment software to determine the extent of movement of the prostate markers and the skeleton for each position during normal and deep breathing.
Results: During normal breathing, maximal movement of the prostate markers was seen in the prone position (cranial-caudal [CC] range: 0.9-5.1 mm; anterior-posterior [AP] range: up to 3.5 mm). In the supine position, prostate movement during normal breathing was less than 1 mm in all directions. Deep breathing resulted in CC movements of 3.8-10.5 mm in the prone position (with and without an aquaplast mold). This range was reduced to 2.0-7.3 mm in the supine position and 0.5-2.1 mm with the use of the false table top. Deep breathing resulted in AP skeletal movements of 2.7-13.1 mm in the prone position, whereas AP skeletal movements in the supine position were negligible.
Conclusion: Ventilatory movement of the prostate is substantial in the prone position and is reduced in the supine position. The potential for breathing to influence prostate movement, and thus the dose delivered to the prostate and normal tissues, should be considered when positioning and planning patients for conformal irradiation.