A review is presented on the use of charged cyclodextrins (CDs) as chiral selectors in capillary electrophoresis (CE) for the separation of analytes in pharmaceutical analysis. An overview is given of theoretical models that have been developed for a better prediction of the enantiomeric resolution and for a better understanding of the separation mechanism. Several types of charged CDs have been used in chiral capillary electrophoretic separation (anionic, cationic, and amphoteric CDs). Especially the anionic CDs seem to be valuable due to the fact that many pharmaceutically interesting compounds can easily be protonated (e.g., amine groups). For that reason several anionic CDs are now commercially available. Cationic and amphoteric CDs are less common in chiral analysis and only a few are commercially available. Attention is paid to the most common synthesis routes and the characterization of the CDs used in chiral capillary electrophoretic separations. The degree of substitution in the synthesized CDs may vary from one manufacturer to another or even from batch to batch, which may have a detrimental effect on the reproducibility and ruggedness of the separation system. In Sections 4, 5, and 6 the applications of anionic, cationic, and amphoteric CDs for the chiral separation in CE are described. Many interesting examples are shown and the influence of important parameters on the enantioselectivity is discussed.