Although the varepsilon4 allele of the apolipoprotein E gene appears as an important biological marker for Alzheimer's disease (AD) susceptibility, other genetic determinants are clearly implicated in the AD process. Here, we propose that a genetic variation in the transcriptional factor LBP-1c/CP2/LSF gene, located close to the LRP locus, is a genetic susceptibility factor for AD. We report an association between a non-coding polymorphism (G-->A) in the 3'-untranslated region of this gene and sporadic AD in French and British populations and a similar trend in a North American population. The combined analysis of these three independent populations provides evidence of a protective effect of the A allele (OR = 0.58, 95% CI 0.44-0.75). We describe a potential biologically relevant role for the A allele whereby it reduces binding to nuclear protein(s). The absence of the A allele was associated with a lower LBP-1c/CP2/LSF gene expression in lymphocytes from AD cases compared with controls. Our data suggest that polymorphic variation in the implication of the LBP-1c/CP2/LSF gene may be important for the pathogenesis of AD, particularly since LBP-1c/CP2/LSF interacts with proteins such as GSKbeta, Fe65 and certain factors involved in the inflammatory response.