Chromogranin B, a soluble acidic secretory protein, is widely distributed in neuroendocrine and neuronal cells, although not in other cell types. To identify the elements governing such widespread, yet selective, expression of the gene, we characterized the isolated mouse chromogranin B promoter. 5'-Promoter deletions localized neuroendocrine cell type-specific expression to the proximal chromogranin B promoter (from -216 to -91 bp); this region contains an E box (at [-206 bp]CACCTG[-201 bp]), four G/C-rich regions (at [-196 bp]CCCCGC[-191 bp], [-134 bp]CCGCCCGC[-127 bp], [-125 bp]GGCGCCGCC[-117 bp], and [-115 bp]CGGGGC[-110 bp]), and a cAMP response element (CRE; at [-102 bp]TGACGTCA[-95 bp]). A 60-bp core promoter region, defined by an internal deletion from - 134 to -74 bp upstream of the cap site and spanning the CRE and three G/C-rich regions, directed tissue-specific expression of the gene. The CRE motif directed cell type-specific expression of the chromogranin B gene in neurons, whereas three of the G/C-rich regions played a crucial role in neuroendocrine cells. Both the endogenous chromogranin B gene and the transfected chromogranin B promoter were induced by preganglionic secretory stimuli (pituitary adenylyl cyclase-activating polypeptide, vasoactive intestinal peptide, or a nicotinic cholinergic agonist), establishing stimulus-transcription coupling for this promoter. The adenylyl cyclase activator forskolin, nerve growth factor, and retinoic acid also activated the chromogranin B gene. Secretagogue-inducible expression of chromogranin B also mapped onto the proximal promoter; inducible expression was entirely lost upon internal deletion of the 60-bp core (from 134 to -74 bp). We conclude that CRE and G/C-rich domains are crucial determinants of both cell type-specific and secretagogue-inducible expression of the chromogranin B gene.