The impact of vaccination with plasmid DNA encoding full-length glycoprotein D (gD) from herpes simplex virus (HSV) type 2 (gD2), secreted gD2, or cytosolic gD2 was evaluated in mice and guinea pigs. Immunization with plasmids encoding full-length gD2 or secreted gD2 produced high antibody levels, whereas immunization with DNA encoding cytosolic gD2 resulted in significantly lower antibody titers in both species (P<.001). Vaccination with DNA encoding full-length or secreted gD2 significantly reduced acute disease in mice and guinea pigs (both P<.001) and subsequent recurrent disease in guinea pigs (P<.05). In guinea pigs, immunization with DNA encoding cytosolic gD2 did not protect from acute or recurrent disease, whereas in mice it did protect, but not as well as DNA encoding full-length or secreted gD2. None of the vaccines resulted in improved virus clearance from the inoculation site, and none significantly reduced recurrent disease when used as a therapeutic vaccine in HSV-2-infected guinea pigs.