Little is known about human anti-idiotypic antibodies. Phage display methodology was used to reconstruct these antibodies from lupus patients, which recognize a subset (T14(+)) of anti-DNA antibodies. Antigen-specific B cells were isolated from the blood using a peptide based on a complementarity determining region (V(H)CDR3) of the prototypic T14(+) antibody. cDNA fragments of the V(H) and V(L) genes prepared from the cells were expressed as phage displayed single chain Fv (scFv) fragments using the pCANTAB-5E phagemid vector. From a reactive clone obtained, the Ig genes used were identified to be V(H)3, D5-D3, J(H)4b, V(kappa)I and J(kappa)2. The heavy chain was highly mutated, especially in CDR3, which bears mutations mostly of the replacement type; this region is also unusual in being extremely long due to a D-D fusion. In contrast, a mouse hybridoma antibody, made to the same T14(+) peptide and transformed as a scFv fragment, uses a short V(H)CDR3 comprising five amino acids, three of which are tyrosines. Tyrosines may be important for antigen binding because two of these also exist in the human V(H)CDR3. The light chains of both antibodies may also contribute to the specificity of the protein, because their V(L) segments, including the CDRs, are highly homologous to each other.