A tetracycline-inducible promoter system was used to generate transgenic tobacco plants that confer inducible expression of the wild type or a dominant negative allele of the gene coding for the cyclin-dependent kinase (CDK) of Arabidopsis thaliana CDC2aAt. Although the total extractable CDK activity was doubled, the induced expression of the wild-type CDC2aAt did not correlate with any change of the cell cycle kinetics. An increase of CDK activity upon CDC2aAt expression was only seen in dividing cell populations, demonstrating that CDC2aAt expression itself is not sufficient to induce CDK activation. Induced expression of the dominant negative CDC2aAt.N146 correlated with a reduction of CDK activity to 66% of the level found in non-induced cells. This decrease was not sufficient to block cell division. The isolation of plants showing only low inducible levels of CDC2aAt.N146 suggests that a counterselection against strong inducible lines had occurred. Accordingly, Triple-Op promoter activity was found in dividing cells in the absence of tetracycline.