Background: Pressure support (PS) has been widely studied in both patients and lung models, but there is little data available evaluating pressure assist/control (P A/C, frequently referred to as PCV) and no data comparing the operational capabilities of these two modes on the newest generation of ICU ventilators. We used a spontaneously breathing lung model to evaluate the response of the following new generation ventilators to varying inspiratory demand in both PS and P A/C: Bear 1000, Dräger Evita 4, Hamilton Galileo, Nellcor Puritan-Bennett 840 and 740, Siemens Servo 300A, TBird AVS.
Methods: A bellows-in-a-box lung model was set at a respiratory rate of 12 breaths/min, inspiratory time of 1.0 second, and peak inspiratory flows (modified square wave) of 40, 60, and 80 L/min. Each ventilator was set at three levels of PS and P A/C: 10, 15, and 20 cm H(2)O. On all ventilators, flow-triggering was set as sensitive as possible without causing self-triggering.
Results: Trigger pressure, trigger pressure-time product, inspiratory trigger time delay, ventilator-delivered peak flow, inspiratory area as a percent of the ideal inspiratory area, expiratory time delay, supraplateau expiratory pressure change, and expiratory area all varied among ventilators and at different lung model peak flows (p < 0.01 and >/= 10% difference). However, PS and P A/C on a given ventilator only differed with regard to expiratory variables (p < 0. 01 and >/= 10% difference).
Conclusion: In a given ventilator little difference exists in gas delivery and response variables between PS and P A/C, but performance differences do exist among the ventilators evaluated. Ventilator performance is diminished at high lung model peak flows and low pressure settings. (I)), whereas PS gives control over ending inspiration to the patient. What has not been clearly defined is the gas delivery and ventilator response differences, if any, between these two (PS and P A/C) pressure targeted assist modes. Most new generation intensive care unit (ICU) ventilators provide both pressure support (PS) and pressure assist/control (P A/C) ventilation.19,20 The specific operational difference between these two modes is the mechanism that transitions inspiration to expiration. With pressure support the primary mechanism is a decrease in peak inspiratory flow to a predetermined level, whereas with P A/C mechanical T(I) is preset.19,20 We compared the operation of seven of the newest generation ICU ventilators in a spontaneously breathing lung model in both PS and P A/C. We hypothesized that there would be no difference in variables assessed between PS and P A/C except for the transition to expiration and that there would be no difference in response among ventilators evaluated.