Extensive contribution of the multidrug transporters P-glycoprotein and Mrp1 to basal drug resistance

Cancer Res. 2000 Oct 15;60(20):5761-6.

Abstract

Despite accumulating evidence that multidrug resistance transporter proteins play a part in drug resistance in some clinical cancers, it remains unclear whether the relatively low levels of multidrug resistance transporter expression found in most untreated tumors could substantially affect their basal sensitivity to antineoplastic drugs. To shed light on this problem, the drug sensitivities of wild-type mouse cell lines were compared with those of lines in which the Mdr1a and Mdr1b genes encoding P-glycoprotein (P-gp) were inactivated and lines in which the Mrp1 gene was inactivated in addition to Mdr1a and Mdr1b. These models permit a clean dissection of the contribution of each transporter to drug resistance at expression levels similar to those in normal tissues and avoid complications that might arise from previous exposure of cell lines to drug selection. For substrate drugs, we found that these contributions can indeed be very substantial. Lines lacking functional P-gp were, on average, markedly more sensitive to paclitaxel (16-fold), anthracyclines (4-fold) and Vinca alkaloids (3-fold). Lines lacking both P-gp and Mrp1 were (compared with wild-type lines) hypersensitive to an even broader array of drugs, including epipodophyllotoxins (4-7-fold), anthracyclines (6-7-fold), camptothecins (3-fold), arsenite (4-fold) and Vinca alkaloids, especially vincristine (28-fold). Thus, even very low levels of P-gp and Mrp1 expression that may be difficult to detect in tumors could significantly affect their innate sensitivity to a wide range of clinically important substrate drugs. An implication is that the use of resistance reversal agents to sensitize drug-naive tumors may be appropriate in more cases than is presently appreciated.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 3T3 Cells / drug effects
  • 3T3 Cells / metabolism
  • ATP Binding Cassette Transporter, Subfamily B, Member 1 / biosynthesis
  • ATP Binding Cassette Transporter, Subfamily B, Member 1 / genetics
  • ATP Binding Cassette Transporter, Subfamily B, Member 1 / physiology*
  • ATP-Binding Cassette Transporters / biosynthesis
  • ATP-Binding Cassette Transporters / genetics
  • ATP-Binding Cassette Transporters / physiology*
  • Animals
  • Antibiotics, Antineoplastic / pharmacology
  • Antineoplastic Agents, Phytogenic / pharmacology
  • Crosses, Genetic
  • Drug Resistance, Multiple / genetics
  • Drug Resistance, Multiple / physiology*
  • Drug Resistance, Neoplasm / genetics
  • Drug Resistance, Neoplasm / physiology*
  • Drug Screening Assays, Antitumor
  • Gene Silencing
  • Genotype
  • Mice
  • Mice, Knockout
  • Multidrug Resistance-Associated Proteins
  • Paclitaxel / pharmacology

Substances

  • ATP Binding Cassette Transporter, Subfamily B, Member 1
  • ATP-Binding Cassette Transporters
  • Antibiotics, Antineoplastic
  • Antineoplastic Agents, Phytogenic
  • Multidrug Resistance-Associated Proteins
  • Paclitaxel