As cell cycle regulators whose activity is frequently altered in human cancers, cyclin-dependent kinases (cdks) are novel targets for therapeutic intervention. cdk inhibition is an emerging strategy for the treatment of non-small cell lung carcinomas (NSCLCs) because most derived cell lines express functional retinoblastoma protein (Rb) but appear to bypass its function with inappropriate cdk activity. Elevated cdk4/cdk6 activity in NSCLC cells is often due to inactivation of the p16Ink4a cdk inhibitor. To model the effects of cdk4/cdk6 inhibition, we have expressed p16Ink4a in a Rb-positive NSCLC cell line that lacks endogenous p16Ink4a expression. Whereas cdk4/cdk6 inhibition and Rb dephosphorylation are expected on p16Ink4a expression, we have also observed indirect cdk2 inhibition. cdk2 inactivation by the redistribution of other cdk inhibitors may be required for p16Ink4a-mediated growth suppression of Rb-positive cells. The implications of such a requirement on the use of chemical cdk inhibitors to treat human cancers will be discussed.