Colonization of the plaque biofilm by the oral pathogen Porphyromonas gingivalis is favored by the presence of antecedent organisms such as Streptococcus gordonii. Coadhesion between P. gingivalis and S. gordonii can be mediated by the SspB protein of S. gordonii; however, the P. gingivalis cognate receptor for this protein has not been identified. In this study, we identified a surface protein of P. gingivalis that interacts with the SspB protein. Coprecipitation between P. gingivalis outer membrane proteins and purified SspB protein demonstrated that a 100-kDa P. gingivalis protein bound to SspB. The 100-kDa protein also bound to an engineered strain of Enterococcus faecalis that expresses the SspB protein on the cell surface. Monospecific polyclonal antibodies to the 100-kDa protein inhibited the binding between P. gingivalis and S. gordonii in a dose-dependent manner up to 86%. Amino acid sequencing of the 100-kDa protein showed homology to a protein previously identified as the P. gingivalis minor fimbria. The minor fimbrial protein may exist as a complex with a hemagglutinin-like protein since the genes encoding these proteins are adjacent on the chromosome and are cotranscribed. Thus, the P. gingivalis receptor for S. gordonii SspB is a 100-kDa protein that structurally may be a minor fimbria-protein complex and functionally effectuates coadhesion.