Proteins with constitutive or transient localization on the surface of Apicomplexa parasites are of particular interest for their potential role in the invasion of host cells. We describe the identification and characterization of TgAMA1, the Toxoplasma gondii homolog of the Plasmodium apical membrane antigen 1 (AMA1), which has been shown to elicit a protective immune response against merozoites dependent on the correct pairing of its numerous disulfide bonds. TgAMA1 shows between 19% (Plasmodium berghei) and 26% (Plasmodium yoelii) overall identity to the different Plasmodium AMA1 homologs and has a conserved arrangement of 16 cysteine residues and a putative transmembrane domain, indicating a similar architecture. The single-copy TgAMA1 gene is interrupted by seven introns and is transcribed into an mRNA of approximately 3.3 kb. The TgAMA1 protein is produced during intracellular tachyzoite replication and initially localizes to the micronemes, as determined by immunofluorescence assay and immunoelectron microscopy. Upon release of mature tachyzoites, TgAMA1 is found distributed predominantly on the apical end of the parasite surface. A approximately 54-kDa cleavage product of the large ectodomain is continuously released into the medium by extracellular parasites. Mouse antiserum against recombinant TgAMA1 blocked invasion of new host cells by approximately 40%. This and our inability to produce a viable TgAMA1 knock-out mutant indicate that this phylogenetically conserved protein fulfills a key function in the invasion of host cells by extracellular T. gondii tachyzoites.