Effects of lysozyme and bovine serum albumin on membrane characteristics of dipalmitoylphosphatidylglycerol liposomes

Colloids Surf B Biointerfaces. 2001 Feb 1;20(2):155-163. doi: 10.1016/s0927-7765(00)00188-0.

Abstract

The effects of adsorption of two kinds of proteins on the membrane characteristics of liposomes were examined at pH 7.4 in terms of adsorption amounts of proteins on liposomes, penetrations of proteins into liposomal bilayer membranes, phase transition temperature, microviscosity and permeability of liposomal bilayer membranes, using positively charged lysozyme (LSZ) and negatively charged bovine serum albumin (BSA) as proteins and negatively charged L-alpha-dipalmitoylphosphatidylglycerol (DPPG) liposomes. The saturated adsorption amount of LSZ was 720 g per mol of liposomal DPPG, while that of BSA was 44 g per mol of liposomal DPPG. The penetration of LSZ into DPPG lipid membranes was greater than that of BSA. The microviscosity in the hydrophobic region of liposomal bilayer membranes increased due to adsorption (penetration) of LSZ or BSA, while the permeability of liposomal bilayer membranes increased. The gel-liquid crystalline phase transition temperature of liposomal bilayer membranes was not affected by adsorption of LSZ or BSA, while the DSC peak area (heat of phase transition) decreased with increasing adsorption amount of LSZ or BSA. It is suggested that boundary DPPG makes no contribution to the phase transition and that boundary DPPG and bulk DPPG are in the phase-separated state, thereby increasing the permeability of liposomal bilayer membranes through adsorption of LSZ or BSA. A possible schematic model for the adsorption of LSZ or BSA on DPPG liposomes was proposed.