The alternative routes of cleavage of the amyloid precursor protein (APP) result in the generation and secretion of both soluble APP and beta-amyloid, the latter being the main component of the amyloid deposits in the brains of individuals with Alzheimer's disease (AD). This study examined the question of whether acetylcholinesterase (AChE) inhibitors can alter the processing of APP and the level of protein kinase C (PKC) in primary rat basal forebrain cultures. Western blotting was used to test two AChE inhibitors (reversible and irreversible) for their ability to enhance the release of APP and PKC content. These inhibitors were ambenonium (AMB) and metrifonate (MTF), at different concentrations. A significant increase was found in the cell-associated APP level in a basal forebrain neuronal culture, and there was an elevation of the APP release into the medium. Increases were similarly observed in the PKC levels after AMB or MTF treatment. The results suggest that these AChE inhibitors promote the non-amyloidogenic route of APP processing, which may be due to their stimulatory effects on PKC. The PKC activation may enhance the alpha-secretase activity and consequently the production of the N-terminal APP. Since both a decreased level of APP secretion and a low activity and level of PKC may be involved in the pathogenesis of AD, it is concluded that the administration of AChE inhibitors to AD patients may facilitate the memory processes and exert a neuroprotective effect.