Clinical risk factor models such as the International Prognostic Index are used to identify diffuse large B-cell lymphoma (DLB-CL) patients with different risks of death from their diseases. To elucidate the molecular bases for these observed clinical differences in outcome, differential display was used to identify a novel gene, termed BAL (B-aggressive lymphoma), which is expressed at significantly higher levels in fatal high-risk DLB-CLs than in cured low-risk tumors. The major BAL complementary DNA encodes a previously uncharacterized 88-kd nuclear protein with a duplicated N-terminal domain homologous to the nonhistone portion of histone-macroH2A and a C-terminal alpha-helical region with 2 short coiled-coil domains. Of note, the BAL N-terminus and secondary structure resemble those of a recently identified human protein, KIAA1268. In addition, both BAL and KIAA1268 map to chromosome 3q21, further suggesting that these genes belong to a newly identified family. BAL is expressed at increased levels in DLB-CL cell lines with an activated peripheral B cell, rather than a germinal center B cell, phenotype. This observation and the characteristic dissemination of high risk DLB-CLs prompted studies regarding the role of BAL in B-cell migration. In classical transwell assays, stable BAL-overexpressing B-cell lymphoma transfectants had significantly higher rates of migration than vector-only transfectants, indicating that the risk-related BAL gene promotes malignant B-cell migration. (Blood. 2000;96:4328-4334)