Locally produced growth factors may have important modulatory roles in final ovarian follicular growth. The aim of this study was to investigate the possible participation of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (FGF2) in bovine follicles during final growth. Ovaries were collected from a slaughterhouse within 10-20 min after exsanguination. A classification of follicles into five groups (<0.5; >0.5-5; >5-20; >20-180; >180 ng/ml) was performed according to the follicular fluid (FF) oestradiol-17 beta content. For a better characterisation of classes the mRNA expressions of FSH receptor, LH receptor and aromatase cytochrome P450 in theca interna (TI) and granulosa cells (GC) were determined. Analysis of VEGF transcript by RT-PCR showed that GC and theca cells express predominantly the smallest isoforms (VEGF(121) and VEGF(165)). VEGF mRNA expression in both tissues (TI and GC) and VEGF protein concentration in total follicle tissue increased significantly (and correlated) with developmental stages of follicle growth. The expression of mRNA for VEGF receptor (VEGFR)-1 and VEGFR-2 was very weak in GC, without any regulatory change during final follicle growth. In contrast, TI showed strong expression of mRNA for both receptors in all follicle classes examined. VEGF protein concentrations in FF increased significantly and continuously to maximum levels in preovulatory follicles. As shown by immunohistochemistry, VEGF protein was clearly localised in TI and GC of preovulatory follicles. FGF2 and FGF receptor (FGFR) mRNA expression in TI increased significantly during final growth of follicles. In contrast, the FGF2 and FGFR mRNA expression in GC was very weak and without any regulatory change during follicle growth. Histological observation revealed that FGF2 protein was localised in theca tissue (cytoplasm of endothelial cells and pericytes) but not in GC. Our results suggest that VEGF and FGF families are involved in the proliferation of capillaries that accompanies the selection of the preovulatory follicle resulting in an increased supply of nutrients and precursors, and therefore supporting the growth of the dominant follicle.