We investigate the hydrodynamic interaction in suspensions of charged colloidal silica spheres. The volume fraction as well as the range of the electrostatic repulsion between the spheres is varied. Using a combination of dynamic x-ray scattering, cross-correlated dynamic light scattering, and small angle x-ray scattering, the hydrodynamic function H(q) is determined experimentally. The effective hydrodynamic interactions are found to be screened, if the range of the direct interaction is relatively long and the static density correlations are strong. This observation of effective hydrodynamic screening is in marked contrast to hard-sphere-like systems.