Chlorophyll and carotenoid radicals in photosystem II studied by pulsed ENDOR

Biochemistry. 2001 Jan 16;40(2):320-6. doi: 10.1021/bi002029l.

Abstract

The stable carotenoid cation radical (Car(*+)) and chlorophyll cation radical (Chl(Z)(*+)) in photosystem II (PS II) have been studied by pulsed electron nuclear double resonance (ENDOR) spectroscopy. The spectra were essentially the same for oxygen-evolving PS II and Mn-depleted PS II. The radicals were generated by illumination given at low temperatures, and the ENDOR spectra were attributed to Car(*)(+) and Chl(Z)(*+) on the basis of their characteristic behavior with temperature as demonstrated earlier [Hanley et al. (1999) Biochemistry 38, 8189-8195]: i.e., (a) the Car(*)(+) alone was generated by illumination at < or =20 K, while Chl(Z)(*+) alone was generated at 200 K, and (b) warming of the sample containing the Car(*+) to 200 K resulted in the loss of the signal attributable to Car(*+) and its replacement by a spectrum attributable to the Chl(Z)(*+). A map of the hyperfine structure of Car(*+) in PS II and in organic solvent was obtained. The largest observed hyperfine splitting for Car(*+) in either environment was in the order of 8-9 MHz. Thus, the spin density on the cation is proposed to be delocalized over the carotenoid molecule. The pulsed ENDOR spectrum of Chl(Z)(*)(+) was compared to that obtained from a Chl a cation in frozen organic solvent. The hyperfine coupling constants attributed to the beta-protons at position 17 and 18 are well resolved from Chl(Z)(*+) in PS II (10. 8 and 14.9 MHz) but not in Chl a(*+) in organic solvent (12.5 MHz). This suggests a more defined conformation of ring IV with respect to the rest of the tetrapyrrole ring plane of Chl(Z)(*+) than Chl a(*+) probably induced by the protein matrix.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carotenoids / chemistry*
  • Cations
  • Chlorophyll / chemistry*
  • Chlorophyll A
  • Electron Spin Resonance Spectroscopy / methods
  • Electron Transport
  • Free Radicals / chemistry
  • Intracellular Membranes / chemistry
  • Intracellular Membranes / metabolism
  • Light-Harvesting Protein Complexes
  • Manganese / chemistry
  • Manganese / metabolism
  • Oxidation-Reduction
  • Photosynthetic Reaction Center Complex Proteins / chemistry*
  • Photosystem II Protein Complex
  • Spinacia oleracea

Substances

  • Cations
  • Free Radicals
  • Light-Harvesting Protein Complexes
  • Photosynthetic Reaction Center Complex Proteins
  • Photosystem II Protein Complex
  • Chlorophyll
  • Carotenoids
  • Manganese
  • Chlorophyll A