Nucleoli undergo structural and molecular modifications during hibernation

Chromosoma. 2000 Nov;109(7):506-13. doi: 10.1007/s004120000102.

Abstract

The nucleolus is a very dynamic structure able rapidly to adapt its activity to the cellular metabolic state. An interesting physiological model characterized by drastic modifications of cellular metabolism is represented by hibernating animals. In the present study we investigated the hepatocyte nuclei of euthermic and hibernating edible dormice (Glis glis) with the aim of revealing, by means of ultrastructural and immunocytochemical analyses, possible modifications of nucleolar components during hibernation. Our observations demonstrate that, in deep hibernation, nucleoli undergo structural and molecular modifications: (a) they show numerous nucleoplasmic invaginations and clumps of dense fibrillar component extend from the nucleolar surface; (b) they are frequently in contact with coiled bodies and fibro-granular material, two nuclear bodies usually occurring in the nucleoplasm; (c) the dense fibrillar component contains significant amounts of small nuclear ribonucleoproteins, splicing factors usually distributed in the nucleoplasm. Taken together, these results suggest that during hibernation complex relationships are established between the nucleolus and nucleoplasm, probably related to functional activities peculiar to this physiological phase. However, since no evident nucleolar modification was found in early hibernating dormice, it seems likely that the particular structural and molecular arrangement of nucleoli establishes progressively during hibernation, becoming evident only in the deepest phase, and then disappears upon arousal.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Nucleolus / ultrastructure*
  • Hibernation*
  • Immunohistochemistry
  • Mice
  • Microscopy, Electron