The abundance of plant nucleolin mRNA is regulated during de-etiolation by phytochrome. A close correlation between the mRNA abundance of nucleolin and mitosis has also been previously reported. These results raised the question of whether the effects of light on nucleolin mRNA expression were a consequence of light effects on mitosis. To test this we compared the kinetics of light-mediated increases in cell proliferation with that of light-mediated changes in the abundance of nucleolin mRNA using plumules of dark-grown pea (Pisum sativum) seedlings. These experiments show that S-phase increases 9 h after a red light pulse, followed by M-phase increases in the plumule leaves at 12 h post-irradiation, a time course consistent with separately measured kinetics of red light-induced increases in the expression of cell cycle-regulated genes. These increases in cell cycle-regulated genes are photoreversible, implying that the light-induced increases in cell proliferation are, like nucleolin mRNA expression, regulated via phytochrome. Red light stimulates increases in the mRNA for nucleolin at 6 h post-irradiation, prior to any cell proliferation changes and concurrent with the reported timing of phytochrome-mediated increases of rRNA abundance. After a green light pulse, nucleolin mRNA levels increase without increasing S-phase or M-phase. Studies in animals and yeast indicate that nucleolin plays a significant role in ribosome biosynthesis. Consistent with this function, pea nucleolin can rescue nucleolin deletion mutants of yeast that are defective in rRNA synthesis. Our data show that during de-etiolation, the increased expression of nucleolin mRNA is more directly regulated by light than by mitosis.