To identify the genes located downstream of the activated Ki-Ras signaling pathways in human colon cancer cells, a PCR-based cDNA subtraction library was constructed between HCT116 cells and HCT116-derived activated Ki-ras-disrupted cells (HKe3). One of the genes in HCT116 that was evidently up-regulated was epiregulin, a member of the epidermal growth factor family that is expressed in many kinds of human cancer cells. HKe3-stable transfectants expressing activated Ki-Ras regained over-expression of epiregulin. To further elucidate the biochemical structure and significance of epiregulin expression in tumorigenesis, HKe3-stable transfectants expressing epiregulin (e3-pSE cells) were established. Epiregulin existed as highly glycosylated membrane-bound forms, and TPA rapidly induced ectodomain shedding of epiregulin. Furthermore, the conditioned medium of e3-pSE cells showed more DNA synthesis for 32D cells expressing epidermal growth factor receptor (DER) cells than that of HKe3. Although anchorage-independent growth in soft agar was not observed for e3-pSE cells, tumorigenicity in nude mice was observed evidently, and their growth rate was correlated with each amount of exogenous epiregulin expression. These results suggested that activated Ki-Ras will be one of the factors contributing to the overexpression of epiregulin in human colon cancer cells, and that epiregulin will play a critical role in human tumorigenesis in vivo.