Activated fibroblast growth factor receptor 3 is an oncogene that contributes to tumor progression in multiple myeloma

Blood. 2001 Feb 1;97(3):729-36. doi: 10.1182/blood.v97.3.729.

Abstract

The t(4;14) translocation occurs frequently in multiple myeloma (MM) and results in the simultaneous dysregulated expression of 2 potential oncogenes, FGFR3 (fibroblast growth factor receptor 3) from der(14) and multiple myeloma SET domain protein/Wolf-Hirschhorn syndrome candidate gene 1 from der(4). It is now shown that myeloma cells carrying a t(4;14) translocation express a functional FGFR3 that in some cases is constitutively activated by the same mutations that cause thanatophoric dysplasia. As with activating mutations of K-ras and N-ras, which are reported in approximately 40% of patients with MM, activating mutations of FGFR3 occur during tumor progression. However, the constitutive activation of ras and FGFR3 does not occur in the same myeloma cells. Thus the activated forms of these proteins appear to share an overlapping role in tumor progression, suggesting that they also share the signaling cascade. Consistent with this prediction, it is shown that activated FGFR3-when expressed at levels similar to those seen in t(4;14) myeloma-is an oncogene that acts through the MAP kinase pathway to transform NIH 3T3 cells, which can then generate tumors in nude mice. Thus, FGFR3, when overexpressed in MM, may be not only oncogenic when stimulated by FGF ligands in the bone marrow microenvironment, but is also a target for activating mutations that enable FGFR3 to play a ras-like role in tumor progression.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • 3T3 Cells
  • Animals
  • Cell Transformation, Neoplastic
  • Disease Progression
  • Gene Expression
  • Genes, ras
  • Humans
  • MAP Kinase Signaling System
  • Mice
  • Mice, Nude
  • Models, Genetic
  • Multiple Myeloma / genetics*
  • Multiple Myeloma / metabolism
  • Multiple Myeloma / pathology
  • Mutation
  • Oncogene Proteins / genetics
  • Oncogene Proteins / metabolism
  • Protein-Tyrosine Kinases*
  • Receptor, Fibroblast Growth Factor, Type 3
  • Receptors, Fibroblast Growth Factor / genetics*
  • Receptors, Fibroblast Growth Factor / metabolism
  • Transfection
  • Translocation, Genetic
  • Tumor Cells, Cultured

Substances

  • Oncogene Proteins
  • Receptors, Fibroblast Growth Factor
  • FGFR3 protein, human
  • Fgfr3 protein, mouse
  • Protein-Tyrosine Kinases
  • Receptor, Fibroblast Growth Factor, Type 3