We have obtained a simulation of the final steps of de novo fatty acid biosynthesis in sunflower control line RHA-274. For this simulation, we have used data from the evolution of fatty acids during seed formation and from the biochemical characterization of beta-keto-acyl-ACP synthetase II (FASII), stearoyl-ACP desaturase (SAD) and acyl-ACP thioesterase activities and the program GEPASI (based on the metabolic control-analysis theory). When physiological data from high- and medium-stearic acid mutants seed development were used with this model the predicted changes in SAD and TE were very similar to those actually found in the biochemical characterization of these mutants. However, the model had to be modified when results from high-palmitic mutants, accumulating unusual fatty acids like palmitoleic, asclepic and palmitolinoleic acids, were used. The emerging model, that fits all of our results, predicts the existence of a dynamic channelling between the FASII complex and SAD, that channelling being responsible for the alternative pathway starting with the desaturation of palmitic acid by the stearoyl-ACP desaturase. This channelling is consistent with our previous results. For instance, the determination of SAD activity on sunflower seed crude extracts only rendered oleic acid when the stearic acid used as a substrate was obtained from a KASII assay, but not when the stearic acid came from in vitro synthesis using acyl-ACP synthetase from Escherichia coli. This theoretical approximation will be very useful in predicting the evolution of the system when introducing new or modified activities; similar approximations in other oil-seed crops could be of great interest.