Different conformations of nascent polypeptides during translocation across the ER membrane

BMC Cell Biol. 2000:1:3. doi: 10.1186/1471-2121-1-3. Epub 2000 Dec 19.

Abstract

Background: In eukaryotic cells, proteins are translocated across the ER membrane through a continuous ribosome-translocon channel. It is unclear to what extent proteins can fold already within the ribosome-translocon channel, and previous studies suggest that only a limited degree of folding (such as the formation of isolated alpha-helices) may be possible within the ribosome.

Results: We have previously shown that the conformation of nascent polypeptide chains in transit through the ribosome-translocon complex can be probed by measuring the number of residues required to span the distance between the ribosomal P-site and the lumenally disposed active site of the oligosaccharyl transferase enzyme (J. Biol. Chem 271: 6241-6244). Using this approach, we now show that model segments composed of residues with strong helix-forming properties in water (Ala, Leu) have a more compact conformation in the ribosome-translocon channel than model segments composed of residues with weak helix-forming potential (Val, Pro).

Conclusions: The main conclusions from the work reported here are (i) that the propensity to form an extended or more compact (possibly alpha-helical) conformation in the ribosome-translocon channel does not depend on whether or not the model segment has stop-transfer function, but rather seems to reflect the helical propensities of the amino acids as measured in an aqueous environment, and (ii) that stop-transfer sequences may adopt a helical structure and integrate into the ER membrane at different times relative to the time of glycan addition to nearby upstream glycosylation acceptor sites.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alanine / chemistry
  • Amino Acid Motifs
  • Amino Acid Sequence
  • Animals
  • Dogs
  • Endoplasmic Reticulum / metabolism*
  • Glycosylation
  • Intracellular Membranes / metabolism*
  • Leucine / chemistry
  • Membrane Transport Proteins / chemistry
  • Microsomes / metabolism
  • Molecular Sequence Data
  • Peptide Mapping / methods
  • Proline / chemistry
  • Protein Conformation
  • Protein Transport
  • Ribosomes / chemistry
  • Signal Recognition Particle / metabolism*
  • Valine / chemistry

Substances

  • Membrane Transport Proteins
  • Signal Recognition Particle
  • Proline
  • Leucine
  • Valine
  • Alanine