A rapid and simple HPLC-ED method is described to identify and measure catecholamines (CTs) and their major metabolites in immune cells. Using this method, intracellular CTs were quantified in human peripheral blood mononuclear cells (PBMCs), T and B lymphocytes, monocytes and granulocytes. Immune cell subsets were separated by density gradient centrifugation and immunomagnetic cell sorting. CTs were also found in the human hematopoietic cell lines NALM-6 (pre-B) and (in smaller amounts) in Jurkat (T lymphoblastoid) and U937 (promonocytic). In cultured PBMCs, intracellular CTs were reduced by both the tyrosine hydroxylase inhibitor alpha-methyl-p-tyrosine and the chromaffin granule depletant reserpine. In NALM-6 cells, both alpha-methyl-p-tyrosine and the dopamine-beta-hydroxylase inhibitor disulfiram reduced intracellular CTs, supporting the presence of active synthetic pathways in these cells. Since sympathoadrenergic mechanisms play a key role in the interactions between the immune system and the nervous system, these findings may be relevant for a better understanding of the neuro-immune network.