Objective: To analyse cell membrane proteins (CMP) acquired by HIV-1 present in the plasma of asymptomatic patients, and their modifications after a cycle of highly active antiretroviral therapy (HAART) and interleukin (IL)-2.
Design and methods: Plasma samples from eight drug-naive asymptomatic subjects underwent immobilized antibody capture (IAC) to detect CMP on the surface of circulating HIV-1. The CMP considered were lymphocyte subset markers (CD45RA, CD45RO), activation markers (HLA-DR), adhesion molecules (LFA-3), costimulatory proteins (B7-2), lymph-node homing receptors (CD62L) and pro-apoptosis molecules (FasL). This analysis was repeated after one cycle of HAART + IL-2, after virus rebound.
Results: LFA-3, followed by CD45RO and HLA-DR, are the most represented CMP on the surface of circulating virions in naive asymptomatic patients; CD45RA, CD62L, B7-2 and FasL are detected only occasionally. After rebound, a significant reduction of CD45RO and HLA-DR, but not of LFA-3, is observed on virions, whereas CD45RA and CD62L, as well as other molecules, are not affected, remaining almost undetectable.
Conclusions: Assuming that CMP on HIV-1 reflect the cellular origin of virions, activated T cells expressing CD45RO, HLA-DR, and LFA-3 may be the main source of HIV-1 in asymptomatic patients. After a cycle of HAART + IL-2, followed by therapy interruption, CD45RA and CD62L are detected on virions rarely, indicating that even during virus rebound, expanded naive T cells do not become a major target of virus replication. Furthermore, the presence of HLA-DR on rebound HIV-1 is decreased, consistent with decreased activation of the HIV-producing cells. More extensive investigation may clarify the significance of these findings with respect to pathogenesis.