Disruption of the Cockayne syndrome B gene impairs spontaneous tumorigenesis in cancer-predisposed Ink4a/ARF knockout mice

Mol Cell Biol. 2001 Mar;21(5):1810-8. doi: 10.1128/MCB.21.5.1810-1818.2001.

Abstract

Cells isolated from individuals with Cockayne syndrome (CS) have a defect in transcription-coupled DNA repair, which rapidly corrects certain DNA lesions located on the transcribed strand of active genes. Despite this DNA repair defect, individuals with CS group A (CSA) or group B (CSB) do not exhibit an increased spontaneous or UV-induced cancer rate. In order to investigate the effect of CSB deficiency on spontaneous carcinogenesis, we crossed CSB(-/-) mice with cancer-prone mice lacking the p16(Ink4a)/p19(ARF) tumor suppressor locus. CSB(-/-) mice are sensitive to UV-induced skin cancer but show no increased rate of spontaneous cancer. CSB(-/-) Ink4a/ARF(-/-) mice developed 60% fewer tumors than Ink4a/ARF(-/-) animals and demonstrated a longer tumor-free latency time (260 versus 150 days). Moreover, CSB(-/-) Ink4a/ARF(-/-) mouse embryo fibroblasts (MEFs) exhibited a lower colony formation rate after low-density seeding, a lower rate of H-Ras-induced transformation, slower proliferation, and a lower mRNA synthesis rate than Ink4a/ARF(-/-) MEFs. CSB(-/-) Ink4a/ARF(-/-) MEFs were also more sensitive to UV-induced p53 induction and UV-induced apoptosis than were Ink4a/ARF(-/-) MEFs. In order to investigate whether the apparent antineoplastic effect of CSB gene disruption was caused by sensitization to genotoxin-induced (p53-mediated) apoptosis or by p53-independent sequelae, we also generated p53(-/-) and CSB(-/-) p53(-/-) MEFs. The CSB(-/-) p53(-/-) MEFs demonstrated lower colony formation efficiency, a lower proliferation rate, a lower mRNA synthesis rate, and a higher rate of UV-induced cell death than p53(-/-) MEFs. Collectively, these results indicate that the antineoplastic effect of CSB gene disruption is at least partially p53 independent; it may result from impaired transcription or from apoptosis secondary to environmental or endogenous DNA damage.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Age Factors
  • Animals
  • Apoptosis
  • Cell Division
  • Cockayne Syndrome / genetics*
  • Crosses, Genetic
  • Cyclin-Dependent Kinase Inhibitor p16 / genetics*
  • DNA Helicases / genetics*
  • DNA Helicases / physiology*
  • DNA Repair
  • DNA Repair Enzymes
  • Fibroblasts / metabolism
  • Fibrosarcoma / metabolism
  • Flow Cytometry
  • Genes, p53 / genetics
  • Genetic Predisposition to Disease
  • Genotype
  • Immunoblotting
  • In Situ Nick-End Labeling
  • Lymphoma / metabolism
  • Mice
  • Mice, Knockout
  • Neoplasms / genetics*
  • Poly-ADP-Ribose Binding Proteins
  • Proteins / genetics*
  • RNA, Messenger / metabolism
  • Time Factors
  • Transformation, Genetic
  • Tumor Suppressor Protein p14ARF
  • Tumor Suppressor Protein p53 / metabolism
  • Ultraviolet Rays
  • ras Proteins / metabolism

Substances

  • Cyclin-Dependent Kinase Inhibitor p16
  • Poly-ADP-Ribose Binding Proteins
  • Proteins
  • RNA, Messenger
  • Tumor Suppressor Protein p14ARF
  • Tumor Suppressor Protein p53
  • DNA Helicases
  • Ercc6 protein, mouse
  • ras Proteins
  • DNA Repair Enzymes