We used a newly established real-time RT-PCR assay for the quantification of the leukemia-specific CBFB/MYH11 transcripts in inv(16)-positive acute myeloblastic leukemia. CBFB/MYH11 could be quantified over a five log range, with a detection limit of 10 molecules of a CBFB/MYH11 plasmid and a 1:10(5) dilution of RNA of the inv(16)-positive ME-1 cell line, respectively. The fusion transcripts were also quantified in 19 patients with acute myeloblastic leukemia and an inv(16) at initial diagnosis. The expression of CBFB/MYH11 varied over a two log range without correlation to clinical response or relapse rate. In nine patients, CBFB/MYH11 was also quantified during/after chemotherapy and autologous or allogeneic stem cell transplantation. All of these patients showed a similar decline of CBFB/MYH11 after intensive therapy. Six of these patients are in complete remission with a stable low-level or absent CBFB/MYH11 expression. Three patients relapsed, and their CBFB/MYH11 transcripts rose again to pretreatment levels. In two patients, this increase in CBFB/MYH11 could be detected by real-time PCR before hematological relapse. These data indicate that real-time RT-PCR can be used for the sensitive detection and quantification of CBFB/MYH11 transcripts in the follow-up of patients with inv(16)-positive AML.
Copyright 2001 Wiley-Liss, Inc.