Inhibition of transforming growth factor beta signaling in MCF-7 cells results in resistance to tumor necrosis factor alpha: a role for Bcl-2

Cell Growth Differ. 2001 Feb;12(2):109-17.

Abstract

Transforming growth factor beta (TGF-beta) is a multifunctional cytokine capable of regulating diverse cellular processes. In this study we investigated the effect of autocrine TGF-beta signaling on tumor necrosis factor (TNF) alpha-induced cell death. We abrogated the TGF-beta autocrine loop by overexpression of a truncated TGF-beta type II receptor in MCF-7 breast carcinoma cells and found that this generated resistance to TNF-alpha-induced cytotoxicity. To elucidate the molecular basis of the influence of TGF-beta on TNF-alpha-induced cytotoxicity, we evaluated the expression levels or activities of proteins involved in TNF-alpha signal transduction or the regulation of apoptosis in general in TGF-beta-responsive and TGF-beta-nonresponsive MCF-7 cells. We observed no significant difference in the expression of TNF-alpha receptors or the TNF receptor-associated death domain protein. In addition, downstream activation of nuclear factor kappaB by TNF-alpha was not altered in cells that had lost TGF-beta responsiveness. Analysis of members of the Bcl-2 family of apoptosis-regulatory proteins revealed that Bcl-X(L) and Bax expression levels were not changed by disruption of TGF-beta signaling. In contrast, the TGF-beta-nonresponsive cells expressed much higher levels of Bcl-2 protein and mRNA than did cells with an intact TGF-beta autocrine loop. Furthermore, restoration of a TGF-beta signal to MCF-7 cells that had spontaneously acquired resistance to TGF-beta caused a reduction in Bcl-2 protein expression. Taken together, our data indicate that loss of autocrine TGF-beta signaling results in enhanced resistance to TNF-alpha-mediated cell death and that this is likely to be mediated by derepression of Bcl-2 expression.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Apoptosis / physiology*
  • Breast Neoplasms / physiopathology*
  • Cell Line
  • Cytokines / metabolism
  • Female
  • Humans
  • Proto-Oncogene Proteins c-bcl-2 / biosynthesis*
  • Signal Transduction / physiology
  • Transfection
  • Transforming Growth Factor beta / metabolism*
  • Tumor Necrosis Factor-alpha / metabolism*
  • Up-Regulation

Substances

  • Cytokines
  • Proto-Oncogene Proteins c-bcl-2
  • Transforming Growth Factor beta
  • Tumor Necrosis Factor-alpha