This study was designed to explore the differences between friction and frictionless mechanics for maxillary canine retraction with the use of a new typodont simulation system, the Calorific machine system. The unit was designed to observe the whole process of tooth movement and is composed of 3 parts: a temperature regulating system, electrothermodynamic teeth, and an artificial alveolar bone component. The efficiency of maxillary canine retraction was compared with the sliding mechanics (along a.016 x.022-in stainless steel labial arch and nickel-titanium closed coil spring) and a canine retraction spring. The patterns of tooth movement obtained with both of these mechanics were measured 5 times each. Friction mechanics were superior to frictionless mechanics in terms of rotational control and dimensional maintenance of the arch (P <.0001); frictionless mechanics were shown to be more effective at reducing tipping and extrusion (P <.0001). However, the observed differences between the 2 methods were relatively small in terms of their clinical significance, and no differences were found in anchorage control (P =.2078). In conclusion, this study indicated that friction and frictionless mechanics perform similarly.