Perception of surface orientation is an essential step for the reconstruction of the three-dimensional (3D) structure of an object. Human lesion and functional neuroimaging studies have demonstrated the importance of the parietal lobe in this task. In primate single-unit studies, neurons in the caudal part of the intraparietal sulcus (CIP) were found to be active during the extraction of surface orientation through monocular (two-dimensional) cues such as texture gradients and linear perspective as well as binocular (3D) cues such as disparity gradient and orientation disparity. We used event-related fMRI to study the functional neuroanatomy of surface orientation discrimination using stimuli with monocular depth cues in six volunteers. Both posterior (CIP) and anterior (AIP) areas within the intraparietal sulcus showed a stronger activation during surface orientation as compared with a control (color discrimination) task using identical stimuli. Furthermore, the signal changes in CIP showed a greater performance effect than those in AIP, suggesting that CIP is tightly linked to the discrimination task.