In the absence of vasopressin, medullary thick ascending limb cells express a K(+)-independent, furosemide-sensitive Na(+)-Cl(-) cotransporter that is inhibited by hypertonicity. The murine renal specific Na(+)-K(+)-2 Cl(-) cotransporter gene (SLC12A1) gives rise to six alternatively spliced isoforms. Three feature a long COOH-terminal domain that encodes the butmetanide-sensitive Na(+)-K(+)-2 Cl(-) cotransporter (BSC1-9/NKCC2), and three with a short COOH-terminal domain, known as mBSC1-A4, B4, or F4 (19). Here we have determined the functional characteristics of mBSC1-A4, as expressed in Xenopus laevis oocytes. When incubated at normal oocyte osmolarity (approximately 200 mosmol/kgH(2)O), mBSC1-4-injected oocytes do not express significant Na(+) uptake over H(2)O-injected controls, and immunohistochemical analysis shows that the majority of mBSC1-4 protein is in the oocyte cytoplasm and not at the plasma membrane. In contrast, when mBSC1-4 oocytes are exposed to hypotonicity (approximately 100 mosmol/kgH(2)O), a significant increase in Na(+) uptake but not in (86)Rb(+) uptake is observed. The increased Na(+) uptake is Cl(-) dependent, furosemide sensitive, and cAMP sensitive but K(+) independent. Sodium uptake increases with decreasing osmolarity between 120 and 70 mosmol/kgH(2)O (r = 0.95, P < 0.01). Immunohistochemical analysis shows that in hypotonic conditions mBSC1-A4 protein is expressed in the plasma membrane. These studies indicate that the mBSC1-A4 isoform of the SLC12A1 gene encodes a hypotonically activated, cAMP- and furosemide-sensitive Na(+)-Cl(-) cotransporter. Thus it is possible that alternative splicing of the BSC1 gene could provide the molecular mechanism enabling the Na(+)-Cl(-)-to-Na(+)-K(+)-2Cl(-) switching in thick ascending limb cells.