To overcome the restriction in using crosslinked gelatin in the pharmaceutical field, D,L-glyceraldehyde (GAL), a non-toxic crosslinking agent, was proposed. Gelatin microspheres crosslinked with different concentrations of GAL (0.5, 1 or 2%, w/v) and for different time periods (1 or 24 h) were prepared. The effect of the preparation variables was evaluated analysing the extent of crosslinking, the morphological aspect, the particle size and the swelling behaviour. To evaluate the pharmaceutical properties, an antihypertensive drug, clonidine hydrochloride, was chosen as drug model and loaded into the microspheres. Either the increase of the crosslinker concentration or of the crosslinking time period decreased both the swelling and the in vitro drug release processes of the microspheres. After the subcutaneous injection, the loaded microspheres crosslinked with the lowest GAL concentration (0.5%, w/v) or for the shortest time period (1 h) showed a reduction of systolic blood pressure (SBP) similar to that recorded with a clonidine hydrochloride solution having the same drug concentration. Instead, the microspheres crosslinked for 24 h with concentrations of GAL higher than 0.5% (w/v) produced a more gradual and sustained SBP reduction and the antihypertensive effect was maintained until 52-72 h. The biocompatibility studies showed that the microspheres crosslinked with GAL are well tolerated in vivo. These results suggest the potential application of gelatin microspheres crosslinked with GAL as a suitable drug delivery system for the subcutaneous administration.