Purpose: Reverse transcription-polymerase chain reaction (RT-PCR)-based detection of tyrosinase mRNA is the most frequently used laboratory method for the detection of circulating tumor cells in melanoma patients. However, previously published results showed considerable variability in the PCR positivity rates.
Materials and methods: We designed a collaborative study to assess the sensitivity, specificity, and clinical relevance of a new standardized RT-PCR-based enzyme-linked immunosorbent assay (ELISA) for the detection of circulating melanoma cells. Blood samples of healthy donors mixed with cells of a melanoma cell line were prepared in a blinded fashion, and aliquots were sent to seven participating laboratories experienced in RT-PCR.
Results: The results demonstrate a high sensitivity (1 melanoma cell/mL blood) and specificity (no false-negatives and 7.4% [2 of 28] false-positives) of the assay and a satisfactory rate of interlaboratory reproducibility. The analysis of aliquots of blinded samples derived from 60 melanoma patients identified tyrosinase mRNA in 17 of 60 (28.3%): three (20%) of 15 stage I patients, two (13.3%) of 15 stage II patients, five (35.7%) of 14 stage III patients, and seven (43.8%) of 16 stage IV patients. The interlaboratory reproducibility of positive samples, however, was extremely low and indicates the presence of low amounts of target mRNA.
Conclusion: Reverse transcriptase-PCR ELISA has a high sensitivity and specificity for the detection of tyrosinase mRNA in peripheral blood cells. The low interlaboratory reproducibility for the detection of tumor cells in blood samples of melanoma patients, however, raises the question of relevance of this assay for clinical use.