Background and aims: Alcohol-induced liver injury is associated with an increase in oxidants from a variety of possible sources. Therefore, it was hypothesized that increased and stable expression of the antioxidant enzyme Cu/Zn-superoxide dismutase (SOD1) would diminish oxygen free radicals and reduce alcohol-induced liver injury.
Methods: To test this hypothesis, rats were given recombinant adenovirus containing Cu/Zn-superoxide dismutase (Ad.SOD1) or beta-galactosidase (Ad.lacZ) and fed ethanol enterally for 3 weeks.
Results: SOD was increased significantly 3-5-fold over endogenous levels in both hepatocytes as well as Kupffer cells 3 weeks after infection. Serum transaminase levels and pathology were elevated significantly in Ad.lacZ-treated animals by using an intragastric feeding model. This effect was blunted significantly in Ad.SOD1-infected animals. Importantly, electron spin resonance-detectable free-radical adducts caused by ethanol were also decreased by SOD1 overexpression. Moreover, the increase in nuclear factor kappaB (NFkappaB), tumor necrosis factor alpha (TNF-alpha), and interleukin 1 messenger RNA (mRNA) caused by ethanol was blunted in animals treated with Ad.SOD1.
Conclusions: These data support the hypothesis that oxidant production is critical in early alcohol-induced liver injury and that gene delivery of antioxidant enzymes may be useful in prevention and treatment.