There is increasing evidence that acetylcholinesterase is organised in a lattice-like fashion in the intermediate layers of the mammalian superior colliculus. In a recent study, we described this organisation in rat by showing that it comprises a well formed honeycomb-like lattice with about 100 cylindrical compartments or modules occupying both the intermediate collicular layers. Considering this enzyme domain as a reference marker for comparing the organisation of collicular input-output systems, the present study investigates whether the principal sensori-motor systems in intermediate layers also have honeycomb-like arrangements. In 33 animals, the distributions of afferents (visual from extrastriate cortex; somatic from the primary somatosensory cortex, the trigeminal nucleus and the cervical spinal cord) and efferents (cells of origin of the crossed descending bulbospinal tract and uncrossed pathway to the pontine gray, the ascending system to the medial dorsal thalamus) were examined in a tangential plane following applications of horseradish peroxidase-wheatgerm agglutinin conjugate (used as an anterograde and retrograde tracer). In 22 of the 33 rats, axonal tracing was made within single tangential sections also stained for cholinesterasic activity in order to compare the neuron profiles with the cholinesterasic lattice.The results show that these afferent and efferent systems are also organised in honeycomb-like networks. Moreover, those related to the cortical, trigeminal and some of the spinal afferents are aligned with the cholinesterasic lattice. Likewise most of colliculo-pontine, colliculo-bulbospinal and half of colliculo-diencephalic projecting cells also tend to be in spatial register with the enzyme lattice. This indicates that the honeycomb-like arrangement is a basic architectural plan in the superior colliculus for the organisation of both acetylcholinesterase and major sensori-motor systems for orientation.