Mass spectrometry of steroid glucuronide conjugates. I. Electron impact fragmentation of 5alpha-/5beta-androstan-3alpha-ol-17-one glucuronides, 5alpha-estran-3alpha-ol-17-one glucuronide and deuterium-labelled analogues

J Mass Spectrom. 2001 Feb;36(2):159-68. doi: 10.1002/jms.117.

Abstract

Owing to the developments of analytical instruments and interfaces (e.g. coupling high-performance liquid chromatography to mass spectrometry), there has been increased interest in new reference materials, for example in doping analysis with steroid glucuronide conjugates. The synthesized reference material has to pass several characterization steps including the use of gas chromatography/mass spectrometry (GC/MS) for its structure confirmation. In the present study, the fragmentation and mass spectrometric behaviour of several steroid glucuronide conjugates of endogenous and anabolic steroids after derivatization to pertrimethylsilylated products and to methyl ester pertrimethylsilylated products were investigated using GC/MS ion trap and GC/MS quadrupole instruments. The mass spectra of the derivatives of androsterone glucuronide, d5-androsterone glucuronide, epiandrosterone glucuronide, etiocholanolone glucuronide, 11beta-hydroxy etiocholanolone glucuronide, 19-norandrosterone glucuronide, d4-19-norandrosterone glucuronide and 1alpha-methyl-5alpha-androstan-3alpha-ol-17-one glucuronide are presented and the origin of typical fragment ions of the glycosidic and steroidal moieties is proposed, based on different derivatization techniques including derivatization with d18-bistrimethylsilylacetamide, methyl ester and trimethylsilyl ester derivatization and selected reaction monitoring. Typical fragmentation patterns which are related to the steroid structure are discussed.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Deuterium
  • Glucuronides / analysis
  • Glucuronides / chemistry*
  • Humans
  • Mass Spectrometry
  • Steroids / analysis
  • Steroids / chemistry*

Substances

  • Glucuronides
  • Steroids
  • Deuterium