We consider environment induced decoherence of quantum superpositions to mixtures in the limit in which that process is much faster than any competing one generated by the Hamiltonian H(sys) of the isolated system. While the golden rule then does not apply we can discard H(sys). By allowing for couplings to different reservoirs, we reveal decoherence as a universal short-time phenomenon independent of the character of the system as well as the bath and of the basis the superimposed states are taken from. We discuss consequences for the classical behavior of the macroworld and quantum measurement: For decoherence of superpositions of macroscopically distinct states H(sys) is always negligible.