Vaults are ribonucleoprotein complexes comprised of the 100 kDa major vault protein (MVP), the 2 high m.w. vault proteins p193 (VPARP) and p240 (TEP1) and an untranslated small RNA (vRNA). Increased levels of MVP, vault-associated vRNA and vaults have been linked directly to non-P-glycoprotein-mediated multidrug resistance (MDR). To further characterize the putative role of vaults in MDR, expression levels of all of the vault proteins were examined in various MDR cell lines. Subcellular fractionation of vault particles revealed that all 3 vault proteins are increased in MDR cells compared to the parental, drug-sensitive cells. Furthermore, protein analysis of subcellular fractions of the drug-sensitive, MVP-transfected AC16 cancer cell line indicated that vault levels are increased, in this stable line. Since TEP1 is shared by both vaults and the telomerase complex, TEP1 protein (and vault) levels were compared with telomerase activity in a variety of cell lines, including various MDR lines. Our studies demonstrate that while vault levels may be a good predictor of drug resistance, their up-regulation alone is not sufficient to confer the drug-resistant phenotype. This implies a requirement of an additional factor(s) for vault-mediated MDR.
Copyright 2001 Wiley-Liss, Inc.