Sarcoplasmic reticulum (SR)-mediated Ca(2+) sequestration and release are important determinants of cardiac contractility. In end-stage heart failure SR dysfunction has been proposed to contribute to the impaired cardiac performance. In this study we tested the hypothesis that a targeted interference with SR function can be a primary cause of contractile impairment that in turn might alter cardiac gene expression and induce cardiac hypertrophy. To study this we developed a novel animal model in which ryanodine, a substance that alters SR Ca(2+) release, was added to the drinking water of mice. After 1 wk of treatment, in vivo hemodynamic measurements showed a 28% reduction in the maximum speed of contraction (+dP/dt(max)) and a 24% reduction in the maximum speed of relaxation (-dP/dt(max)). The slowing of cardiac relaxation was confirmed in isolated papillary muscles. The late phase of relaxation expressed as the time from 50% to 90% relaxation was prolonged by 22%. After 4 wk of ryanodine administration the animals had developed a significant cardiac hypertrophy that was most prominent in both atria (right atrium +115%, left atrium +100%, right ventricle +23%, and left ventricle +13%). This was accompanied by molecular changes including a threefold increase in atrial natriuretic factor mRNA and a sixfold increase in beta-myosin heavy chain mRNA. Sarcoplasmic endoplasmic reticulum Ca(2+) mRNA was reduced by 18%. These data suggest that selective impairment of SR function in vivo can induce changes in cardiac gene expression and promote cardiac growth.