Haspin is a serine/threonine kinase, recently identified in mice, that is thought to regulate cell cycle and differentiation of haploid germ cells. Here, the haspin gene is identified within an intron of the integrin alphaE gene. Transcription occurs from a bi-directional CpG island-associated promoter that also generates an alternatively spliced integrin alphaE derived RNA. Remarkably, the human and murine haspin genes lack introns, and have features of retroposons. The human haspin cDNA reveals that the human and murine proteins are 83% identical in the C-terminal kinase domain, but only 53% identical in the N-terminal region. The haspin kinase domain has structural features that distinguish it from previously characterized proteins and suggest that haspin is a member of a new family of protein kinases. Although formerly thought to be expressed selectively in the testes, haspin is also transcribed at lower levels in thymus, bone marrow, fetal liver and other fetal tissues, and in all proliferating cell lines tested. Thus haspin is likely to be important in regulation of diploid as well as haploid cell differentiation in a variety of tissues.