End point of the rp process on accreting neutron stars

Phys Rev Lett. 2001 Apr 16;86(16):3471-4. doi: 10.1103/PhysRevLett.86.3471.

Abstract

We calculate the rapid proton ( rp) capture process of hydrogen burning on the surface of an accreting neutron star with an updated reaction network that extends up to Xe, far beyond previous work. In both steady-state nuclear burning appropriate for rapidly accreting neutron stars (such as the magnetic polar caps of accreting x-ray pulsars) and unstable burning of type I x-ray bursts, we find that the rp process ends in a closed SnSbTe cycle. This prevents the synthesis of elements heavier than Te and has important consequences for x-ray burst profiles, the composition of accreting neutron stars, and potentially galactic nucleosynthesis of light p nuclei.